TWOJA PRZEGLĄDARKA JEST NIEAKTUALNA.

Wykryliśmy, że używasz nieaktualnej przeglądarki, przez co nasz serwis może dla Ciebie działać niepoprawnie. Zalecamy aktualizację lub przejście na inną przeglądarkę.

Katedra Nanometrologii

Publikacja Katedry w czasopiśmie Nanotechnology

Data: 28.06.2021

Gratulujemy Bartoszowi Świadkowskiemu oraz innym współautorom opublikowania pracy "Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers” wydanej w czasopiśmie Nanotechnology (IF=3.9). Wszystkim życzymy dalszych sukcesów naukowych. 

Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers

B. Świadkowski, W. Majstrzyk, P. Kunicki, A.Sierakowski, T. Gotszalk

Atomic force microscopy (AFM) belongs to the high resolution and high sensitivity surface
imaging technologies. In this method force interactions between the tip and the surface are
observed to characterize sample properties. In the so-called contact AFM (C AFM) mode the tip
is brought into continuous contact with the sample. Significant progress in the AFM technology
can be obtained, when the so-called active cantilever technology is implemented in the surface
measurements. The built-in deflection actuator enables very precise excitation of the cantilever.
Moreover, as the mass of the beam is very small the static beam displacement can be controlled
in the wide frequency range. In the experiments, which we describe in this article, we applied
the so called active electromagnetic cantilevers. They integrate a conductive loop which, when
immersed in the magnetic field and biased with electric current, acts as an electromagnetic
deflection actuator. The induced and precisely estimated Lorentz force, which is a function of
bias current, cantilever geometry and magnetic field makes the cantilever deflect. Moreover, the
probe stiffness can be calibrated with lower uncertainty as in the case of standard
thermomechanical analysis. NZ AFM technology required application of a novel control
algorithm, called PredPID, in which the cantilever bending caused by a
proportional-integral-derivative (PID) block maintaining the constant load force was predicted

10.1088/1361-6528/aba0f2

Galeria zdjęć

Politechnika Wrocławska © 2025