TWOJA PRZEGLĄDARKA JEST NIEAKTUALNA.

Wykryliśmy, że używasz nieaktualnej przeglądarki, przez co nasz serwis może dla Ciebie działać niepoprawnie. Zalecamy aktualizację lub przejście na inną przeglądarkę.

Katedra Nanometrologii

Publikacja Katedry w w czasopiśmie Journal of Sound and Vibration

Data: 11.06.2025

Gratulujemy dr. inż. Piotrowi Putkowi, dr. inż. Bartoszowi Cz. Pruchnikowi, prof. Teodorowi Gotszalkowi oraz innym współautorom opublikowania pracy "Analysis of dynamic pull-in for lumped MEMS model of atomic force microscope with constant magnetic excitation" w czasopiśmie Journal of Sound and Vibration wydawnictwa Elsevier (IF: 4,3).

Analysis of dynamic pull-in for lumped MEMS model of atomic force microscope with constant magnetic excitation

Piotr S. Skrzypacz, Piotr A. Putek, Bartosz Cz. Pruchnik, Alkham Turganov, Grant A. Ellis, Teodor P. Gotszalk

We study the dynamical behavior of electromagnetically actuated MEMS cantilevers used in atomic force microscopy (AFM) in the non-contact working state. The nonlinear nature of the MEMS sensor’s tip-sample interaction, considered in the dynamic operation mode, must be appropriately modeled due to the van der Waals-type attraction/repulsion force. The resulting one-degree-of-freedom lumped parameter model constitutes the initial value problem for singular oscillator equation. The occurrence of pull-in solutions for this model with one magnetic excitation parameter is thoroughly analyzed. In particular, due to the Lorentz forcebased  electromagnetic actuation, we investigate two dynamic pull-in scenarios corresponding to a nonlinear system for which pull-in thresholds are analytically determined. Moreover, sufficient conditions for occurrence of pull-in or oscillatory solutions are rigorously derived and validated numerically. These results generalize those given previously, and can be useful for designing single-degree-of-freedom models of electromagnetically actuated MEMS cantilevers. Finally, we present and discuss a comparison between experimental data and theoretical predictions for a defined benchmark case.

Journal of Sound and Vibration 617 (2025) 119215; DOI: 10.1016/j.jsv.2025.119215

Galeria zdjęć

Politechnika Wrocławska © 2025